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Little room for errors in life-time assessment but 
limited quantitative tools…

Les méthodologies utilisées actuellement ne donnent pas d’information sur
la durée de vie résiduelle. Toutefois, la connaissance de cette durée de vie
permettrait d’améliorer la sécurité des appareils et d’optimiser la
planification de leur maintenance.

- Cetim

Motivation : Dilemma of SHM engineer –
replace or repair; now or later 

Douglas oil complex, North Wales, 2022Aldermyrberget, Sweden, November 2020 Mirepoix-sur-Tarn, 2019

CDG Aeroport terminal 2E, 2016 2



Challenge : Insights  for decision making ?
Focus of current SHM techniques :  Provide a 
diagnosis of the health of structures.

Problem: Will they threaten the mechanical
integrity of the structure ? And in how long ?

Cracks do not grow continuously!
Precursory acoustic emission signals
during tensile failure of M250 steel
welds, Wuriti et al. 2020.

Our solution: Mechanics-based SHM approach that can predict the residual lifetime of 
structures from the precursory damage events. 

Will the crack grow and what is the actual remaining
lifetime ? Can we change the operational parameters
to increase it ?

What about prognosis instead of diagnosis ?
Los Alamos Science and Technology

Magazine, July 2013

Alert on the presence of damage & cracks

No clue about the residual lifetime
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An argument for physics-based modeling

The sequence of damage events reveals the distance to
failure that we miss if we only focus on the failure of
individual components!

Ramadan et al., 2008

Steel cable

Stress-corrosion cracking

Li et al., 2012

Fatigue failure in tension

CFRP cable

Damage cascades (and hence acoustic emission) intensify close to failure.

Illustration of the concept on a cable

Damage monitoring:
Level of (individual) wires

• Wire are imperfect: varied 
failure properties

• Multiple wires may undergo 
fail  simultaneously.

Damage of cable ?
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Decade(s) of developing the fracture mechanics of
disordered materials

2D modeling: long-range interactions

1D modeling: short range interactions

dissipation as 

o mech.  energy

o acoustic energy

failure
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Evolution of mech. precursors

Experiments : model elasto-damageable solids

Damage events are not independent but are triggered by each other, leading to cascades

Universality in how materials progressively damage and fail
Intermittent bursts of signals +   Behavior close to failure 
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Lifetime estimation using mechanics based 
statistical tools* M

odel system
 

Average size of precursor

pr
ed
ic
t

cu
rr
en
t

cr
iti
ca
lAll data

Data available for prediction

We use precursors occurring before tcurrent (in red) to
make a prediction of the failure time, tpredict.

Ø Multiple independent methods
Ø Use only events from recent history
Ø Conservative prediction on residual life-time (tc - tcurrent )
Ø An error margin of 10 % on tc after 3/4 of the total lifetime

Oh okay!  Then 
here is the updated 
life-time prediction!

Sensor has picked 
new signals…

Statistical 
physics

Fracture (damage) 
mechanics

*French patent FR2002824 (Mars 2020), Procédé et dispositive d’analyse d’une structure 7



Proof of concept: Lab-scale testing

2D cellular solids

Precursor size

Compressive failure 
of plaster

Acoustic energy rate Frequency of precursors

Leak of a paper-tube based 
pressure vessel
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Crack initiation in a modified 
Brazilian disk test.

Acoustic energy rate

Acoustic emission time-series reveal the upcoming failure irrespective 
of the material and the loading conditions 8



Proof of concept: Industrial component

Tensile failure of a subsea 
fastener due to stress corrosion

Regime
of crack 

elaboration Regime of stable crack growth 
due to hydrogen embrittlement
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Deployment in large-scale structures ?



Initiation and growth of cracks in  supporting 
cable.

Stress-corrosion / fatigue cracks in crucial
weldments. 

Cracks within the anchorage and in concrete
columns.

Potential use-case: Off-shore Wind Turbines

Employing our methods, AI post-treated data can then be used for prognostics.
ü Mechanics enabled statistical tools for SHM data analysis.
ü Numerical modeling fed by SHM data.
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#1. Mechanics based statistical tools

[1] French patent FR2002824 (2020), Procédé et dispositive d’analyse d’une structure

Failure of cables : crack 
initiation and growth

Failure of structural
elements: crack initiation

Monitoring (fatigue) 
cracks in real-time

On-coming possible failures anticipated in real-time [1] 
Drop a sensor & estimate the remaining lifetime.

[1]

Perrin et al (2008)
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Fracture mechanics can predict fatigue crack growth.
However, predictive mechanics models require :
• In-service mechanical properties
• In-service loading conditions
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Catastrophic failure when 
𝐾 = 𝐾!

Crack growth rate in terms of 
number of cycles, 𝑁

function of crack length 𝑎
and loading amplitude Δ𝜎

#2. Numerical twin from SHM – enhanced prediction  
for prolonging lifetime

Crack speed is not a constant ! 
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#2. Numerical twin from SHM – enhanced prediction  
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Crack speed is not a constant ! 

Physics-based modeling
- intermittent damage

Update with more signals

Validate decision-making
first on the numerical twin

An agile strategy of
continuous learning

Structure-specific
material constants: 𝑪, 𝒎

Structure-specific prediction of in-service  loading 
conditions that can be used in designing reinforcements .

Real-time monitoring of 
crack length     and loading conditions : 𝚫𝑲 → (a, Δ𝜎)

Predictions can be updated with more signals and measures of prolonging life can be validated.

Calibration in lab aids in determining
real-time fracture properties 

[1]

[2]

[1] Crack length is measured once and then tracked using sensor signals following our method. 
[2] An iterative method can be developed from signals-based crack length measurements.

13



A role for AI:  Enabler of mechanics-based tools

In-service mechanical loadings & materials 
properties inferred from the sensor data are 
used in numerical modeling.

Data from sensors
Collected in-service, noisy

Mechanics enabled predictions

Artificial intelligence that 
improves the signal to noise ratio

Key ingredients for predictive SHM solutions

Optimal and transparent use of AI techniques on raw 
data to avoid a post-treatment bias in our analyses

Beyond enhanced predictions of residual lifetime, this SHM approach based on the mechanics modeling of the
component failure (or numerical twins) paves the way for

o The design of optimized repairing strategies and maintenance plan
o The optimal use of the component by tuning the operation parameters

in response to sensor data

Compare data 
with model 
predictions

<<<<<<<<<
<<<<<<<<<

Update model and 
predict future 
signals

Sensor data

Data  center 

AI based 
post-treatment

reduces storage costs 

mechanics 
of disordered 
materials 

Prolong
remaining lifetime
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data 
analysis

numerical 
models

SHM inputs
(passive 

monitoring)

Mechanics-
enabled SHM

• Structure specific predictions
• Quantitative risk evaluation (execute now or later ?)
• Inputs for improved interventions
• Beyond prediction, towards prolonging lifetime

Doing more with the available data

Towards frugal health monitoring

As our methods are based on the intermittent nature of failure
in structural materials, they are also relevant for data from
optical fibers, damage levels from full-field ultrasound
measurements, strain gauges etc.

laurent.ponson@upmc.fr 
Ph : 06 84 10 75 16
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