GeRICO Gestion des risques structurels par ponts Connectés

APPEL À PROJETS PONTS CONNECTÉS

Un groupement d'acteurs complémentaires, des expériences communes ayant permis d'identifier un besoin récurent

Un gestionnaire impliqué bien que non partenaire :

<u>Le Département de la Loire Atlantique</u>

Partenaire	Rôle dans le projet	Compétences apportées au projet	Apports du projet au partenaire		
SCE	Mandataire - Calculs linéaires, Approche AMO	AMO, Calcul ouvrages complexes	Renforcement de l'expertise AMO		
OSMOS	Mise en œuvre de l'instrumentation, Exploitation et tri des data	Instrumentation	Développement de matériels plus accessibles s'appuyant sur la technologie de la corde optique		
STRAINS	Calculs dynamiques et non linéaires, en appui à SCE pour l'interprétation des data	Calculs avancés	Valorisation de l'expertise calculs avancés		
Ville d'Angers	Mise à disposition de son patrimoine	Gestionnaire OA	Renforcement des capacités de suivi		

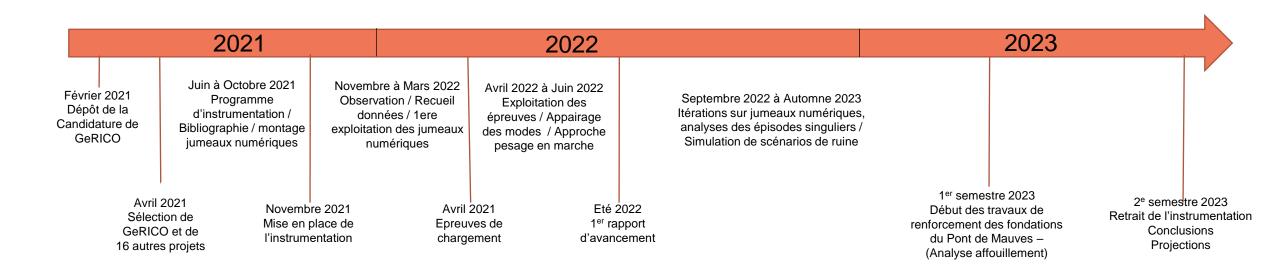
- Une famille d'ouvrages : les ouvrages de type Treillis métalliques
- Un constat : une surveillance difficile, faute d'instrumentation accessible et d'approches méthodologiques homogènes.
- Un principe de mesure : déformation en continu sur une durée minimum de 12 mois
- Une technologie : capteurs de déformation (Corde Optique) à connexion filaire, inclinomètres, accéléromètres, fissuromètres
- Des difficultés pressenties :
 - Sur la caractérisation des matériaux et des assemblages
 - Sur la caractérisation des désordres
 - Sur le filtrage des signaux pour se concentrer sur les modes propres principaux pour des structures de géométrie complexe

- Des moyens adaptés à l'ambition du projet et pour l'analyse des données :
 - Données statiques et dynamiques grâce à la prise de mesure à haute fréquence (100 Hz)
 - Ajustement des besoins en termes d'instrumentation
 - "Operational Modal Analysis" (OMA)
- Un résultat à destination directe des collectivités :
 - Informations sur la circulation réelle (pesage des convois lourds) et ses effets sur les ouvrages
 - Indice synthétique d'évolution, détection d'anomalies du comportement mécanique en temps réel et identification en temps réel des causes probables, déclenchement des IDP

Des cas pratiques définis avec le soutien des collectivités

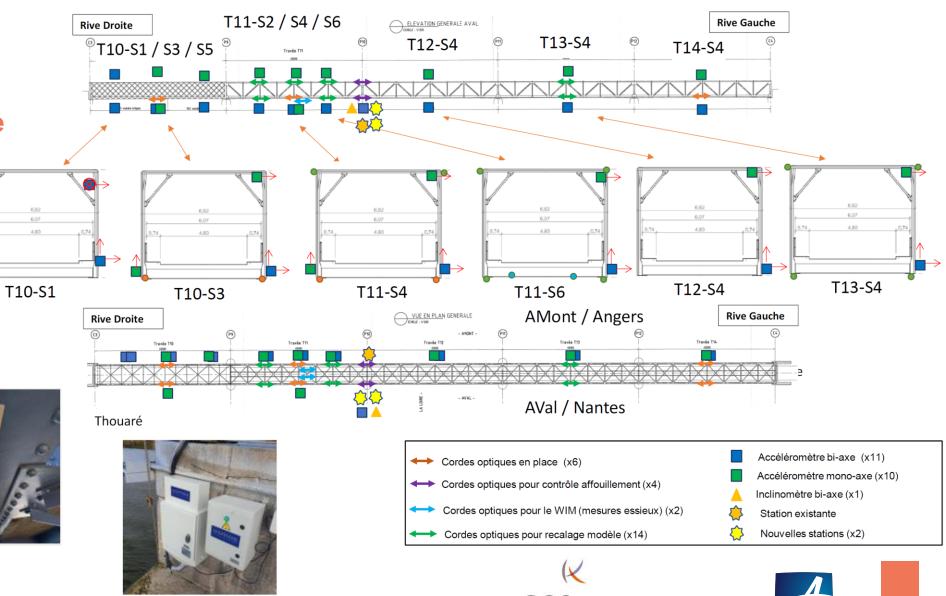
Des ouvrages ayant déjà fait l'objet d'études avancées par les membres du groupement

Ouvrages proposés	Typologie	IE	Enjeux et objectifs de l'étude
Grand pont de Mauves / La Loire RD 31 à MAUVES / LOIRE CD 44 Loire Atlantique	Pont cage en fer puddlé de 1882. Poutres latérales et treillis multiples rénové en 2020. 482 ml 11 travées, appuis fondés sur pieux bois	2 IQOA	Instrumentation de 2 travées contiguës à une pile soumise à affouillement/tassement. Suivi du comportement mécanique sous exploitation.
Pont Du Haut Village / La Loire RD 37 St julien de Concelles CD 44 Loire Atlantique	Pont cage en fer puddlé 1882. Poutres latérales et treillis multiples. 225 ml 5 travées appuis fondés sur pieux bois	2E IQOA	Instrumentation des 2 travées contiguës à P10 présentant un risque d'affouillement et/ou de tassement. Suivi du comportement mécanique sous exploitation.



Avancement du projet

Instrumentation:

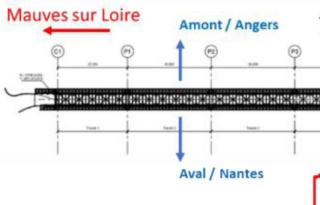

Pont du Haut-Village

21 accéléromètres

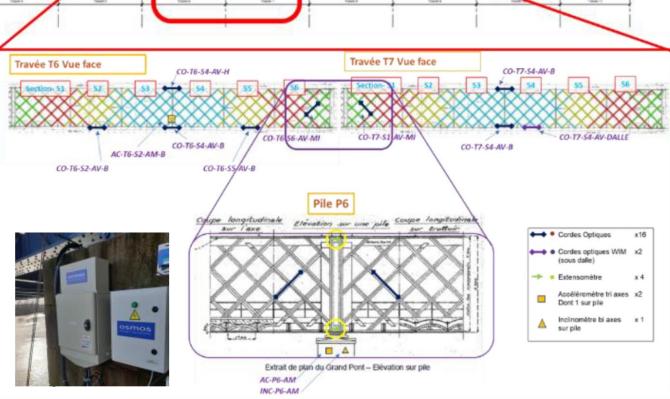
26 cordes optiques

3 stations EDAS

Instrumentation:


Pont de Mauves

2 accéléromètres


18 cordes optiques

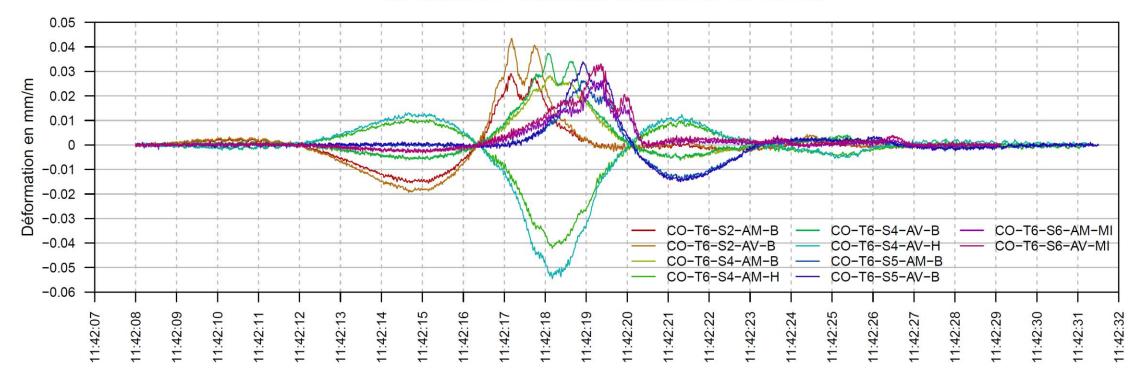
Instrumentation sur Travée T6 Travée T7 Pile P6

4 extensomètres

Implantation Grand Pont

Vue en plan - du dessus

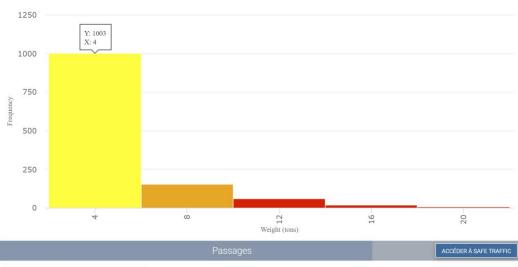
HHHHKHHHHHKOKOKOKOKOKO



Chapelle-Basse-Mer / Divatte

Données brutes : exemple sur les cordes optiques de la travée T6 du pont de Mauves au passage d'un véhicule

CO Travée 6 : Évènement du 30/03/2022 à 11:42:07



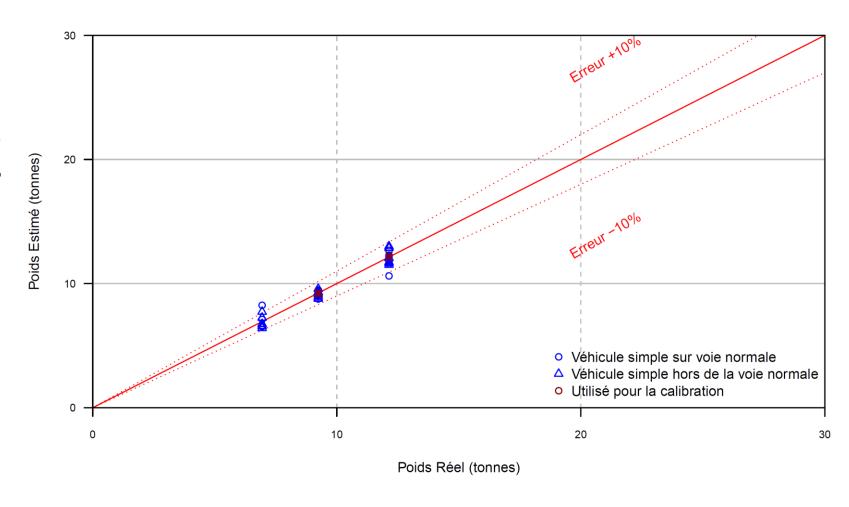
Résultats:

Pesage en marche dynamique des véhicules, détection des surcharges en temps réel

Tous	•	Tous les	indices de	e con 🔻										
Voir	ld ↓	Date	Heure	Direction	Essieux	Longueur (m)	Vitesse (km/h)	Poids	Plaque	Image	Vidéo	Autorisation	Confiance	Actions
0	13352	29/09/2022	08:47:29	N-S	3	11.129	29	16.3					4	0
0	13351	29/09/2022	08:40:59	S-N	2	2.3	27.6	4	ù.	-	4	2	4	0
0	13350	29/09/2022	08:37:03	N-S	2	4.827	56.1	4.6	-			*	3	0
0	13349	29/09/2022	08:31:46	N-S	2	3.536	57.9	5.5	-	9	4		3	0

Passage Data Sheet

1 1 1 1	Time: Maximum Strain (mm/m): Gross Weight (tons): Number of Axles: Length (m): Speed (km/h): Direction: Additional information: Confidence Level:	28.7 4 11.5 46.7 N-S Crossing FALSE / Nea			
	Confidence Level:	3.63 m	7 m	0.91 r	
				X	



Résultats:

Le pesage par pont instrumenté est calibré par un test de charge dynamique en conditions réelles de circulation, le 20/04/2022 pour le Haut-Village et le 21/04/2022 pour Mauves.

Poids total estimé avec une marge de +/- 10% pour le Haut-Village et +/- 7% pour Mauves.

Charge à l'essieu estimée avec une marge de +/- 10% sur le pont de Mauves.

Analyse Modale:

• Sur le Haut-Village :

Concordance entre modes en accélération et modes en courbure déduits des cordes optiques (pour les modes de flexion).

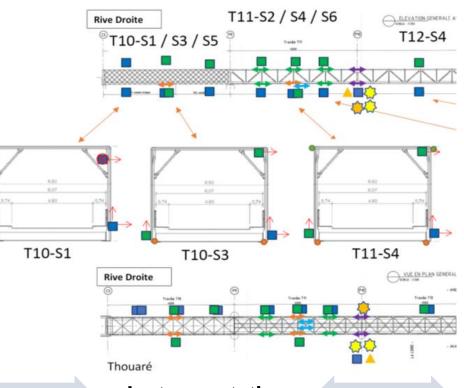
Vérification de la pertinence d'utiliser des mesures concaténées issues d'enregistrements séparés.

Sur Mauves :

Modes en courbure uniquement, sur deux travées.

Modes en accélération (journée du 20/01/2022)	Fa (Hz)	Damp. Acc	Fc (Hz)	Damp. Cou	Modes en courbure (journée du 20/01/2022)
Flexion 1	2,94	1,5%	2,95	1,7%	
Flexion 2	3,32	1,8%	3,31	1,9%	Elévation :
Flexion 3	3,62	1,9%	3,65	1,8%	
Flexion 4	4,16	1,5%	4,24	1,8%	LIGVALIVII .
Flexion 5	4,51	1,6%	4,52 – 4,58	2,3%	Elevation:
Torsion 1	6,71	1,4%	Non détecté		
Torsion 2	7,89	1,5%	Non détecté		
Torsion 3	8,25	1,4%	Non détecté		
Torsion 4	8,71	0,5%	Non détecté		

Analyse Modale Opérationnelle : Comparaison hiver et été


Modes en accélération (journée du 20/01/2022)	F (Hz)	Damp.	F (Hz)	Damp.	Modes en accélération (journée du 18/07/2022)
Non détecté			2,27	5,1%	Transversal
Flexion 1	2,94	1,5%	2,95	2,8%	Flexion 1
Flexion 2	3,32	1,8%	3,29	3,3%	Flexion 2
Flexion 3	3,62	1,9%	3,68	2,0%	Flexion 3
Flexion 4	4,16	1,5%	4,16	1,9%	Flexion 4
Flexion 5	4,51	1,6%	4,48	2,7%	Flexion 5
Torsion 1	6,71	1,4%	6,61	2,1%	Torsion 1
Torsion 2	7,89	1,5%	7,83	2,6%	Torsion 2
Torsion 3	8,25	1,4%	8,13	2,3%	Torsion 3
Torsion 4	8,71	0,5%	8,55	2,0%	Torsion 4

GERICO vers l'idée d'un jumeau numérique

Le dialogue entre mesures et modèle structurel permet :

- De mieux représenter la réalité de l'état de l'ouvrage à un instant t donné ;
- De simuler des scénarios de ruine de l'ouvrage ;
- De détecter des pathologies : affouillement de piles, dégradation de section conduisant à un déficit de raideur...

Ouvrage

Instrumentation

Modèle Eléments Finis

GERICO Dialogue entre ouvrage et mesures

Modèle EF

Une distribution de masse: M

Une distribution de raideur: K

Définition du projet d'instrumentation

Calibrage du modèle

Analyse continue des mesures, recalcul de l'état de l'ouvrage

Ouvrage vu par le prisme des mesures

> Déformation des CO

GERICO Dialogue entre ouvrage et mesures

Modèle EF

Une distribution de masse: M

Une distribution de raideur: K

Définition du projet d'instrumentation

Calibrage du modèle

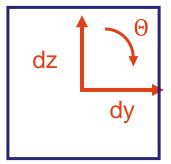
Analyse continue des mesures, recalcul de l'état de l'ouvrage

Ouvrage vu par le prisme des mesures

> Déformation des CO

GERICO Définition du projet d'instrumentation

Modèle EF


Une distribution de masse: M

Une distribution de raideur: K

Définition du projet d'instrumentation

Quels capteurs? Où les positionner?

Pour voir quoi ?

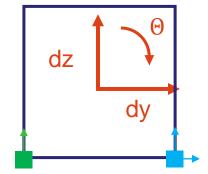
Ouvrage vu par le prisme des mesures

> Déformation des CO

GERICO Définition du projet d'instrumentation

Modèle EF

Une distribution de masse: M


Une distribution de raideur: K

Définition du projet d'instrumentation

Quels capteurs?

Où les positionner?

Pour voir quoi ?

Ouvrage vu par le prisme des mesures

> Déformation des CO

GERICO Définition du projet d'instrumentation

Modèle EF

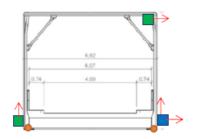
Distribution de masse: M

Distribution de raideur: K

Définition du projet d'instrumentation

Quels capteurs? Où les positionner?

Pour voir quoi


Ouvrage vu par le prisme des mesures

> Déformation des CO

Vibrations des accéléromètres

Mode de mise en parallélogramme : le cadre du pont se tord et n'agit pas comme un bloc monolithique

3 accéléromètres dans une section pour voir ce phénomène et le distinguer d'une torsion

GERICO Dialogue entre ouvrage et mesures

Modèle EF

Distribution de masse: M

Distribution de raideur : K

Calibrage du modèle

Ouvrage vu par le prisme des mesures

> Déformation des CO

Dialogue entre ouvrage et mesures : les outils

Modèle EF

Distribution de masse : **M**

Distribution de raideur : **K**

Analyse modale :

Fréquences propres : f Déformées modales

Simulation d'épreuves :

Contraintes et déformations

Analyse modale Opérationnelle

Fréquences propres : f Déformées modales

Epreuves de chargement

Déformations des cordes optiques

Ouvrage vu par le prisme des mesures

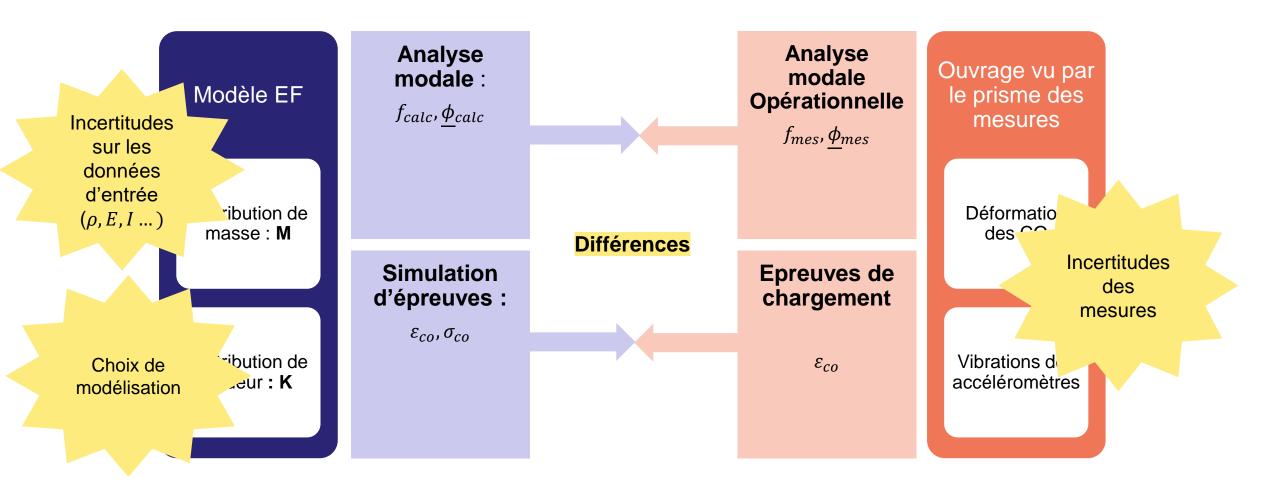
Déformation des CO

Vibrations des accéléromètres

Mise en regard

des éléments

provenant du modèle et des


mesures

Dialogue entre ouvrage et mesures : les outils

GERICO Dialogue entre ouvrage et mesures

Modèle EF

Distribution de masse: M

Distribution de raideur : K

Calibrage du modèle

Utilisation de l'analyse modale

Ouvrage vu par le prisme des mesures

> Déformation des CO

GERICO Exemple d'appairage réussi

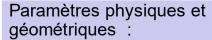
Mode exp. 1 – Flexion verticale

Fréquence numérique : 2,530 Hz

Indice de corrélation : 0,932

Mode f = 2.89 Hz, amortissement = 0.0187

mode 1


GERICO Principe du processus de recalage

Données expérimentales post traitées

Analyse modale opérationnelle : extraction des modes propres et fréquences propres

- Module d'Young E , densité ρ , inerties etc.
- Dimensions

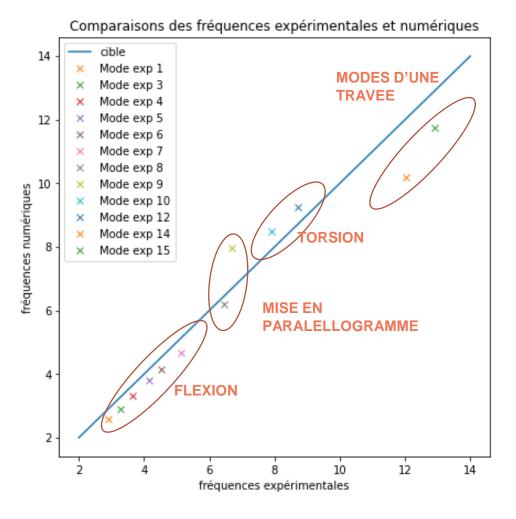
Modèle numérique M , extraction des modes propres de vibration

Appairage / Corrélation : pour comparer les bonnes données

Calcul d'une erreur dépendant de :

- L'erreur sur la fréquence : $\frac{\Delta f}{f}$
 - L'erreur sur la déformée

Itération et optimisation pour minimiser l'erreur



GERICO Comparaison des fréquences

GERICO Dialogue entre ouvrage et mesures

Modèle EF

Une distribution de masse: M

Une distribution de raideur : K

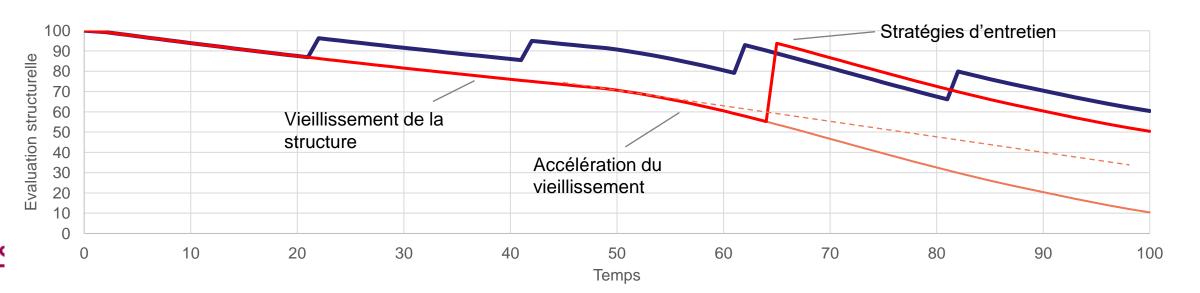
Définition du projet d'instrumentation

Calibrage du modèle

Analyse continue des mesures, recalcul de l'état de l'ouvrage

Ouvrage vu par le prisme des mesures

> Déformation des CO



- Bénéfice collectif / Gains économiques et sociétaux en matière de gestion de patrimoine
 - Etablissement d'une démarche méthodologique pour ce type d'ouvrage
 - Analyse critique, par comparaison théorie/pratique, des études de portances traditionnelles
 - Surveillance continue en complément des IDP qui peuvent être plus espacées.
 - Pesage dynamique pour la vérification de l'observance des limitations de tonnage.
 - Détection d'une évolution du comportement structurel avant apparition des signes visuels de vieillissement, pour maintenir le niveau de service des ouvrages.

=> Anticipation et aide à la décision du MOA pour l'élaboration d'un programme pluriannuel de maintenance et le maintien du niveau de service des ouvrages

Merci de votre attention

